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Interfacing Unstructured Tetrahedron
Grids to Structured-Grid FDTD

Douglas J. Riley and C. David Turner, Member, IEEE

Abstract—TFinite-element unstructured tetrahedron grids pro-
vide considerable modeling flexibility but can give rise to an ex-
tremely large number of cells when solving open-region problems.
The finite-volume hybrid-grid (FVHG) algorithm enables un-
structured grids to be combined with traditional structured-grid,
rectangular-cell, finite-difference time-domain (FDTD), thereby
considerably reducing the unstructured-mesh overhead in sur-
rounding space. In this letter, a simple technique to interface
free-meshed, tetrahedron grids with FDTD is described. The
two grids are directly coupled without the need for spatial
interpolation. The tetrahedron mesh is defined to terminate on
a rectangular surface that may be located very close to the
geometry under study. Absorbing boundary conditions are easily
applied in the surrounding FDTD grid. This technique provides
finite-element modeling flexibility with the benefits of explicit
time differencing and limited unstructured-mesh overhead. Mui-
timaterial regions can be solved. The FVHG algorithm has been
found to be accurate and generally stable for the long-term, even
with complex free meshes generated by advanced solid-modeling
software.

I. INTRODUCTION

RADITIONAL FDTD is an efficient solution method,

but it can provide only a “stair-case’ approximation
to curvature. This approximation can lead to considerable
computational error [1] if the number of cells-per-wavelength
is not increased. Because of this, there is interest in the devel-
opment of accurate and efficient body-conforming, volumetric
Maxwell solvers. Transient solvers based on computational
fluid dynamics (CFD) techniques [2], finite-volumes [3]-[6],
and local contour modifications [7] are under development.
Finite-element approaches, although primarily used in the
frequency domain, are also receiving attention in the time
domain [8]. The accuracy and efficiency associated with var-
ious nonorthogonal cell shapes is of considerable importance
with all methods, and late-time stability becomes an additional
concern with transient approaches. Some algorithms, such as
the CFED-based formulation, advance both the electric and
magnetic fields on a single grid, whereas the approaches
described [3]-[7] use two offset grids typically referred to as
primary and dual grids.

Much of the previous work on transient nonorthogonal
algorithms is based on grids generated by mapped-meshing
techniques. Such grids are generally composed of hexahedral-
and/or wedge-shaped cells and are block structured, although
the grids can be referenced using unstructured techniques.
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Mapped-meshing usually requires partitioning the geometry
to construct the mesh and is therefore not as flexible as free-
meshing algorithms. Free meshing generally gives rise to fully
unstructured tetrahedron grids, although free-meshing hexahe-
dral algorithms are presently being developed [9]. Mapped-
mesh grids provide a more visually satisfying mesh than grids
obtained from free-meshing, but the overall quality of the grid
with regard to cell stretch and distortion is often superior with
tetrahedral elements.

This letter discusses free-meshing with linear tetrahedrons
when used in conjunction with the finite-volume hybrid-grid
(FVHG) technique [5]. The finite-volume portion of the FVHG
solver uses a generalization/simplification of the modified
finite-volume algorithm introduced in [3] and adds a time-
averaging scheme to obtain late-time stability on complex
grids. For open-region problems, the FVHG algorithm embeds
an unstructured grid in a traditional FDTD code. Either an
analytic or a Berenger-type [10] absorbing boundary condition
is easily applied in the structured grid without incurring
considerable overhead. The unstructured region is designed
to terminate so that a direct connection to the structured grid
occurs without spatial interpolation between grids. A transition
from unstructured tetrahedrons to structured-grid FDTD has
been accomplished within a minimum of 1-2 finite elements
from solid models generated by I-DEAS [11]. This distance
is remarkably close to the solid model and has lead to highly
resolved grids without an excessive number of nonorthogonal
cells. The direct connection of these tetrahedrons to the
cubical hexahedrons used by the FDTD method is discussed
below.

II. UNSTRUCTURED/STRUCTURED MESH INTERFACE

An I-DEAS generated tetrahedron grid of a sphere
embedded in a closely spaced cubical box with the proper
unstructured-grid termination characteristics is shown in
Fig. 1. The surface of the bounding box was partitioned into
quadrilateral sub-surfaces such that the nodes at the vertices
of these surfaces will spatially align with the nodes of the
structured FDTD grid that will ultimately be connected. The
creation of the proper surface partitions can be accomplished
easily within I-DEAS. When the tetrahedron grid terminates
on this partitioned box the surface quadrilaterals become split
into two isosceles triangles. To connect an FDTD cubical grid
requires a simple transition layer called the “wrapper.” The
wrapper is generated automatically during the pre-processing
phase by analyzing the termination structure of the tetrahedron
grid.
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Fig. 1. Tetrahedron grid of a sphere embedded in a cubical box. On the six
faces of the bounding box the bases of the tetrahedral elements exhibit an
isosceles triangular form that will enable the direct connection of a structured
FDTD grid. The FDTD grid fills the remainder of the problem space.
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Fig. 2. Creation of a seven-face, six-sided element to interface unstructured
tetrahedrons with structured FDTD elements.

A hexahedral element interfaced to the bases of two tetrahe-
dral cells is shown in Fig. 2. For use with the FVHG algorithm,
one face of this hexahedron is split into two isosceles triangles;
this cell is treated as a seven-faced element. A layer of these
special hexahedral cells is wrapped completely around the
unstructured grid. The tetrahedron grid terminates on the inner
boundary of the wrapper while the FDTD grid connects to
the outer boundary. Standard cubical FDTD cells interface
directly to the special hexahedral elements without spatial
interpolation; this enables simple FDTD cells to be used to
fill the remainder of the computational volume out to the
termination of the grid. To increase the accuracy and dynamic
range of the simulation, the code is run in scattered-field mode.
This eliminates any numerical reflections the incident field
may encounter when hitting the tetrahedron interface.

The complete time-advancement scheme is as follows. The
electric (E) fields in the structured grid are initially ad-
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Fig. 3. Monostatic RCS for the 9.936-in. NASA metallic almond [12].

vanced. The FDTD E-fields on the outer boundary of the
wrapper are second-order time-interpolated and mapped into
the unstructured-grid registers. The unstructured region is
advanced (possibly) several sub-time steps as dictated by the
Courant condition in this region. The unstructured E-fields are
subsequently mapped into the FDTD registers on the inner
boundary of the wrapper. Advancing the FDTD magnetic (H)
fields in the structured grid completes the overall time step.

III. NASA ALMOND

Geometry, measurements, and method-of-moment (MoM)
calculations for the monostatic radar cross-section (RCS) of
the 9.936-in. NASA almond were presented in [12]. The
FVHG analysis of this geometry is presented here. The reader
is referred to reference [12] for geometry details. A total of
65000 tetrahedral elements were used to model the almond
embedded in a closely spaced rectangular box; approximately
15000 of these elements filled the almond’s interior. Based on
a maximum (taken over the primary and dual grids) average
edge length, the unstructured grid provided 13 “cells” pet
wavelength at 3.5 GHz. This tetrahedron grid was embedded in
a 68 x 38 x 68 structured FDTD grid with second-order Mur
absorbing boundaries. Attempting to fill this entire volume
with tetrahedrons would have lead to millions of elements (it
is noted that impedance-matched absorbing layers could be
used with the tetrahedrons, but accuracy and efficiency has
been found to be superior using the hybrid-grid approach).

The monostatic RCS at 1.19 GHz for the vertical/vertical
(VV) and horizontal/horizontal (HH) cases [12] are shown in
Fig. 3. Measured data are only provided at 5° intervals and
were obtained by visually averaging the data displayed in [12].
Although the HH FVHG results differ from the measurements
by 24 dBSM (dB square m) for certain angles, the results are
globally very close to the published MoM calculations {12].

IV. CONCLUDING REMARKS

The FVHG algorithm provides a seamless connection be-
tween unstructured and structured grids that is free from spatial
interpolation across grid boundaries. A simple technique using
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seven-faced, six-sided elements was introduced to directly
connect finite-clement-like tetrahedron grids with traditional
structured-grid FDTD. By treating a nonorthogonal region as
a local problem within a structured computational volume,
computer resources are greatly reduced while adding full 3D
solid-modeling flexibility without the geometrical limitations
of mapped-meshing. Multimaterial regions are easily accom-
modated within the unstructured grid.

One of the most powerful applications of the FVHG tech-
nique is to geometries with extrusions, such as aircraft wings
and tails. Highly absorbing boundaries must be sufficiently
far removed so that interaction between the extrusions is not
destroyed. Thus, a large amount of uninteresting space must
be gridded. With the FVHG algorithm, this space is gridded
with simple FDTD cells instead of costly tetrahedral elements.

Another application that is particularly well suited to the
FVHG technique is microelectronics. This is because areas
with high complexity can be modeled with tetrahedral ele-
ments while low complexity areas are modeled with FDTD.
Coupling between regions occurs through the FVHG wrapper.
However, care is required in the implementation because dif-
ferent cell types provide different impedances to propagating
waves that can cause numerical reflections at interfaces. These
reflections can often be suppressed by greater than 50 dB
with minor adjustments to the material properties in each grid.
Papers describing this application are forthcoming.
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